""" Produce performance measurement """ import argparse import multiprocessing import os import time from collections import OrderedDict from random import randint from sandbox.perf.simulation import ComputeSubject, ComputeBehaviour, ComputeMechanism from synergine2.config import Config from synergine2.cycle import CycleManager from synergine2.log import SynergineLogger from synergine2.simulation import Simulation, Subjects def simulate(complexity, subject_count, cycle_count, cores): config = Config(dict(complexity=complexity, core=dict(use_x_cores=cores))) simulation = Simulation(config) simulation.add_to_index(ComputeSubject) simulation.add_to_index(ComputeBehaviour) simulation.add_to_index(ComputeMechanism) subjects = Subjects(simulation=simulation) for i in range(subject_count): subject = ComputeSubject( config=config, simulation=simulation, ) subject.data = [randint(0, 1000) for i in range(1000)] subjects.append(subject) simulation.subjects = subjects cycle_manager = CycleManager( config, SynergineLogger('perf'), simulation=simulation, ) for j in range(cycle_count): cycle_manager.next() def main(): parser = argparse.ArgumentParser(description='Perf measures') parser.add_argument( '--max_cores', type=int, default=0, help='number of used cores', ) args = parser.parse_args() host_cores = multiprocessing.cpu_count() retry = 1 cycles = 10 subject_counts = [500] complexities = [200] max_cores = args.max_cores or host_cores results = [] datas = OrderedDict() for core_i in range(max_cores): # if core_i == 0: # continue core_count = core_i + 1 for subject_count in subject_counts: for complexity in complexities: print('COMPLEXITY: {}, SUBJECTS: {}, CORES: {}'.format( complexity, subject_count, core_count, ), end='') durations = [] for try_i in range(retry): start_time = time.time() simulate(complexity, subject_count, cycles, core_count) durations.append(time.time() - start_time) duration = min(durations) result = { 'cores': core_count, 'complexity': complexity, 'subject_count': subject_count, 'cycles': cycles, 'duration': duration, 'duration_cycle': duration / cycles, 'duration_subj_complex': (duration / cycles) / (subject_count * complexity), } results.append(result) print(': {}s, {}s/c, {}s/C'.format( result['duration'], result['duration_cycle'], result['duration_subj_complex'], )) datas.setdefault(complexity, {}).setdefault(subject_count, {})[core_count] = result['duration_cycle'] for d_complexity, c_values in sorted(datas.items(), key=lambda e: int(e[0])): data_file_name = 'DATA_{}'.format(str(d_complexity)) try: os.unlink(data_file_name) except FileNotFoundError: pass with open(data_file_name, 'w+') as file: file.writelines(['# (COMPLEXITY {}) SUBJECTS CORES_{}\n'.format( str(d_complexity), ' CORES_'.join(map(str, range(1, max_cores+1))), )]) for d_subject_count, d_cores in c_values.items(): line = '{} {}\n'.format( str(d_subject_count), ' '.join(map(str, d_cores.values())), ) file.writelines([line]) """ subj_core = [] for subj, core_v in c_values.items(): for core_nb in core_v.keys(): subj_core.append((subj, core_nb)) file.writelines(['# (COMPLEXITY {}) SUBJECTS CORES_{}\n'.format( str(d_complexity), ' '.join([ 'SUBJ_{}_COR_{}'.format( subj, core_nb, ) for subj, core_nb in subj_core ]) )]) """ for d_complexity, c_values in datas.items(): print('') print('gnuplot -p -e "set title \\"COMPLEXITY_{}\\"; plot {}"'.format( str(d_complexity), ','.join([ ' \'DATA_{}\' using 1:{} title \'CORE_{}\' with lines'.format( d_complexity, d_core+1, d_core, ) for d_core in range(1, max_cores+1) ]) )) if __name__ == '__main__': main()